

 Navigation

 	
 index

 	
 next |

 	BooJS 0.0.1 documentation

Welcome to BooJs documentation!

A JavaScript backend for the Boo language.

Contents

	Overview
	Motivation

	Comparison with Javascript

	Comparison with Boo
	Type system and standard library

	Primitive types

	Enums

	Named parameters

	Generators

	Safe Access / Existential operator

	Compilation
	Response Files

	Compilation metadata

	Improving the code-compile-test cycle

	SourceMaps

	Runtime and dependencies

	Generating code for production

	Macros and Syntactic Attributes
	Macros

	js

	Attributes

	Overloading
	Method overloading

	Runtime library
	Reasoning for using a runtime

	Builtins

	Events

	Modules

	Generators
	Generator interface

	Native support

	Closing generators

	Async library
	Deferred

	Promise

	Utilities

	Async/Await

Resources

	Presentation at Telefónica Digital’s DEVCON1 [http://www.slideshare.net/drslump80/devcon1-boojs]

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Overview

BooJs allows to compile Boo source code into JavaScript code for its execution
in browsers and other JavaScript environments like Node.js.

Motivation

Developing large code bases with JavaScript is hard, even with the current set
of tools and frameworks there are just so many times when a statically typed
language would find subtle bugs at the compiling stage instead of when testing.
Moreover, people from many different backgrounds are put together to develop
large applications and not all of them embrace or are trained in using the good
parts of the language. The situation is somewhat improved by the use of languages
like CoffeeScript, although for the overhead of adding a compilation step they
don’t offer much more than a nicer syntax. Boo is great because it will not only
give you a nicer, more structured syntax but also has a pretty intelligent
compiler to help you in your development.

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Comparison with Javascript

	Feature
	Boo
	Javascript

	First-class functions
	yes
	yes

	Function expressions
	yes
	yes

	Closures
	yes
	yes

	Scope
	Lexical (Function, Type)
	Lexical (Function)

	Name resolution
	Static and Dynamic
	Dynamic

	Type system
	Static and Dynamic (Strong)
	Dynamic (Weak)

	Variadic functions
	yes
	yes (via arguments)

	Inheritance
	Class/Type based
	Prototypal

	Generators
	yes
	yes (Harmony)

	List comprehensions
	yes
	yes (Harmony)

	Iterators
	yes
	yes (Harmony)

	Properties
	yes
	yes (Harmony)

	Destructuring
	yes
	yes (Harmony)

	Method overloading
	yes
	no

	Operator overloading
	yes
	no

	Macros
	yes
	no

	Pattern Matching
	yes
	no (only limited switch)

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Comparison with Boo

BooJs strives to be as much compatible with Boo as possible, there are however
a few differences, some are the result of the project design, others are
mandated by performance reason and then there are a few improvements to the
language that haven’t yet be ported to standard Boo.

Type system and standard library

Probably the biggest difference is that BooJs uses the JavaScript type system
and standard library instead of those in .Net. This is by design, it ensures
proper performance and JavaScript’s eco system of libraries is very rich anyway.
Besides, the scope of the .Net library is huge and porting it to JavaScript
would require an IL to JavaScript compiler while BooJs works at a much higher
level.

These differences mean that you can’t compile the same source files with Boo and
BooJs without somehow abstracting those differences. Of course it’s possible to
create your own proxy objects and extension methods to emulate the JavaScript
types for Boo or vice versa.

Primitive types

The following boo literal types are not defined in BooJs: char, sbyte, byte,
short, ushort, long, ulong and single. Only int, uint and double are
supported as number types.

At the runtime, standard JavaScript rules apply when working with number types,
in summary all numbers are actually 64bit doubles with a 53bits mantissa, when
used with binary arithmetic operators all numbers are casted to 32bit integers.

Note

There is an additional BooJs literal type with the symbol any. It’s
just an alias for duck.

Enums

Enums are converted to simple JavaScript literal objects mapping keys to numbers.
This allows to use enums for 90% of the use cases normally, however when printing
them they are just integer values, it’s not possible to obtain the associated key.

enum Foo:
 orange
 apple = 2

print Foo.apple # outputs "2"

Named parameters

Boo supports the following syntax to initialize object properties when calling
a constructor.

f = Foo("hello", PropOne: 100, PropTwo: "value")
Translates to:
f = Foo("hello")
f.PropOne = 100
f.PropTwo = "value"

In BooJs it is also possible to use named parameters for plain methods, however
when used with a non-constructor the parameters are converted to a Hash, there
is no actual matching for the referenced method parameter names. The reason is
that BooJs tries to simplify the integration with JavaScript code and there isn’t
a clean way to obtain the argument names for an arbitrary function.

foo(100, x: 10, y: 20)
Translates to:
foo(100, {"x": 10, "y": 20})

The use of a last argument accepting a hash with additional options is actually
a pretty common pattern in JavaScript libraries, so this compiler transformation
turns out to be very useful to produce readable code but still allowing natural
integration with JavaScript code.

Generators

Check out the specific documentation about them. In essence the
changes are compatible with plain Boo.

Safe Access / Existential operator

BooJs supports a new unary operator, represented by a question mark, that allows to
perform two common action: check if a value is not null and protect against accessing
null/undefined references.

By suffixing an expression with ? the compiler will convert the expression to a
test checking if the expression is different to null. This is good way to ensure we
do proper null element comparisons, working around issues with 0 and an empty string
evaluating as false in JavaScript.

If the ? symbol appears before a dot, an open parenthesis or an open square bracket
it will protect it to ensure that the next part of the expression is only accessed if
the previous part is not null, otherwise a null value is returned.

Often times we have to work with nested structures, which might have some paths nulled,
instead of manually checking every step of the path before accessing it we can use the
safe access operator to do it for us.

evaluates to a boolean by testing if `foo` is not null
foo?

calls `foo.bar()` if foo is not null
foo?.bar()

evaluates to null if any of the nested objects is null
if person?.address?.city == 'Barcelona':
 pass

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Compilation

Compilation in BooJs differs from other popular Javascript transpiler solutions in
that there isn’t a one-to-one relation between a .boo file and a .js file. The compiler
will consume any number of .boo files to generate a single output .js file as a result
of the compilation process.

The resulting javascript file is the equivalent to a .Net assembly (a .dll file) or
a .so file from GCC. It contains all the generated code from the source files, no matter
if it was just one or a dozen.

If no output filename is given to the compiler, it will use the name of the first source
file given. See the following examples:

$ boojs test.boo
Generates test.js

$ boojs test1.boo test2.boo
Generates test1.js

$ boojs test1.boo test2.boo -o:out.js
Generates out.js

If the compiler detects an error while processing the source files it will report it
and exit with an exitcode of 1. A successful compilation won’t output anything and
terminate with an exitcode of 0. You can use this exit code values to integrate the
compiler into build systems (ie: your text editor).

Response Files

Response files (.rsp) are text files that contain compiler switches and arguments.
Each switch can be on a separate line, allowing comments on lines prefixed with the
symbol. To instruct the compiler to parse a response file we pass it as an
argument prefixed with the @ symbol. Response files can be nested by including
an argument line with the @ prefix and the path to another response file.

$ cat cool-project.rsp
This is the configuration to compile my cool project
-embedasm-
-reference:libs/mylib.js
-o:coolproject.js
Project files to compile
file_a.boo
file_b.boo

$ cat cool-project.verbose.rsp
-verbose+
@cool-project.rsp

$ boojs -debug @cool-project.verbose.rsp

Note

This mechanism is a great way to automate simple builds without using a dedicated
build tool. Even when using a build tool they can simplify the integration of
the BooJs compiler.

Compilation metadata

Boo is a statically typed language, in order for the compiler to check if the code
complies with the type contracts it needs to know what the valid types are for using
a symbol. Since Javascript is not typed, once we have compiled some Boo code the
compiler wouldn’t be able to apply those type checks without having access to the
original .boo files. To avoid having to compile again and again all the source in
your project the compiler will embed type information as a comment //# booAssembly
in the generated javascript file, this allows the compiler to have all the needed
information when referencing an already compiled library.

This type information is quite heavy in size, so it’s recommended to strip it
before publishing the files for its use in production, since it’s just needed by the
compiler and in any case used at runtime. Most javascript bundlers or optimizers will
take care of removing comments in the javascript code, so while BooJs does not offer
a tool for stripping this info it is a trivial operation if you include one of these
optimizers in your build process.

Improving the code-compile-test cycle

In order to ease your development work flow you can instruct the BooJs compiler to
keep watching your project files for modifications, triggering automatically a
compilation on every change in the source files. By using the –watch command line
flag, the compiler will keep running after the first compilation, monitoring
for changes in all the involved files, automatically compiling a new version of the
program if a change is detected.

$ boojs --watch -o:test.js test1.boo test2.boo

In this execution mode compiler messages are outputted to the stderr using the
yellow color for warnings and the red color for errors.

To exit the watcher mode just press ctrl-c to terminate the compiler process.

Note

Since the compiler generates assemblies from the source files, it can’t
monitor a directory for new files and the such. If your project consists
of different assemblies you will have to launch the compiler in watcher mode
for each one of them, terminating and launching them again if you add, delete
or rename any source file.

SourceMaps

Google Chrome and Firefox (other browsers will probably support it shortly) offer
support for mapping a Javascript file with the files that were used to generate it,
.boo files in our case. When we enable the sourcemap feature in the compiler two
things will happen, first a new file will be generated containing a json payload
with the sourcemap metadata (version 3), secondly a special comment will be included
in the generated javascript file indicating the location of the sourcemap metadata.

When debugging a javascript file in a sourcemap supporting environment, we would
be able to operate on the original Boo code instead of the generated Javascript one,
including the option to interactively debug the program step by step based on Boo
statements.

$ boojs -o test.js -sourcemap:test.js.map *.boo
Generates test.js and test.js.map

Note

If we are using the Boo.debug.js runtime addon and we compile in
debug mode, we will be given a processed stack trace when an uncaught
exception occurs, mapping the Javascript to the original Boo code. This
functionality should work independently of the native support for
sourcemaps in the executing environment.

Runtime and dependencies

BooJs requires a small runtime for the generated code to work, besides any other
dependencies your program may be using (ie: jQuery). These dependencies should be
provided in the executing environment before loading the generated code, by default
BooJs won’t load them automatically or include them as part of the generated file.

At the bare minimum you will need to make sure that the Boo.js file has been
loaded. There is an optional runtime Boo.debug.js file which can help in debugging
problems, which you can use while developing.

Generating code for production

The compiler generates performant code by default if you don’t use the --debug
switch. However it tries to generate Javascript code that is easy for a human
to read, in order to ease troubleshooting problems. If you’re targeting an
environment where size matters (web site, mobile devices, ...) you will most
probably benefit from using a Javascript optimization tool like Google Closure
or UglifyJS.

These tools will first of all remove metadata included in the form of comments
which is only needed by the compiler. Moreover they will mangle variable names
to make them shorter and thus reducing the final code size. Some of them will
even reduce the size by removing dead code (not used types for example).

Note

The compiler will try to generate code that is safe to process thru
any of these optimizers, so you won’t have to worry about configuring
them to produce a valid result.

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Macros and Syntactic Attributes

By default some macros are made automatically available for their use in Boo without
importing any namespace. Some of them are equivalent to standard Boo while others
are only available when using the BooJs compiler.

Note

Macros, Meta-Methods and AST Attributes are resolved at compile-time, this
means that they are executed as part of the compilation and thus not part
of the generated JavaScript code. They work by transforming the program syntax
tree, refer to the standard Boo documentation to learn more about them.

Macros

assert

Use this macro to ensure some condition applies when compiling in debug mode. If the
given condition fails it will raise a Boo.AssertionError exception. When compiling
without the debug switch the assertion is removed from the generated source code.

assert arg > 10
Raises Boo.AssertionError('arg > 10')
assert arg < 100, 'Argument must be less than 100'
Raises Boo.AssertionError('Argument must be less than 100')

const

Boo’s syntax doesn’t allow to define variables at the module level, the compiler will
interpret such declarations as the start of the module entry point. This macro allows
to work around this issue and bind static variables to the current module.

namespace MyNS

const foo = 10
Declares MyNS.foo as an int with a value of 10
const foo as string = 'foo'
Declares MyNS.foo as a string with a value of 'foo'

global

Unlike JavaScript, Boo’s compiler will complain if you reference a symbol that hasn’t
been previously declared either in the current module or imported from another namespace.
In order to integrate Boo code with external symbols defined somewhere else in your
execution environment, the global macro provides the means to make those symbols
available in the code.

global jQuery # jQuery is available with a type of duck
jQuery('#foo').html('Hi there!')

global MY_FLAG as int # MY_FLAG is available with a type of int
print MY_FLAG + 10

ifdef

Allows to define blocks for conditional compilation by evaluating the condition
against the compiler defined symbols. You can use your own defined symbols with
the ``-D:symbol`.

If the condition evaluates to false the contents of the block are removed from
the compilation unit.

ifdef DEBUG:
 print "Debug mode enabled"

ifdef not WINDOWS and DEBUG:
 print "Compiling on a non-windows system"

js

Every now an then there is the odd case where we can’t map some JavaScript code to
BooJs, or perhaps we are just prototyping something and we want to copy-paste some
snippet of code. The js meta method will include any literal string given as
argument without modifying it. Any other expression will be wrapped in a call to
eval.

a = 100 + js('10')
js `alert(a)`
generates:
var a = 100 + 10
alert(a)

We can include multi line snippets too
a = js(`
 ['foo',
 'bar'
]
`)

Anything other than a string literal is generated with a call to eval
a = 'alert("foo")'
js a
generates:
var a = 'alert("foo")';
eval(a);

match

BooJs automatically exposes the match macro from Boo.Lang.PatternMatching. This
macro allows to use pattern matching in your code completely at compile time. You can
learn a few of the basics from this mailing list message [https://groups.google.com/d/msg/boolang/DsvE0SFVXPg/XvraEpRP0vQJ].

new

JavaScript allows to instantiate new objects in a variety of ways, when interfacing
external code without using type definitions for it we may need to indicate the
compiler how it should call a constructor function.

The new symbol is not actually a macro but a meta-method, the syntax for
applying it is the same as for functions but it’s resolved at compile-time, so it
doesn’t appears in the generate JavaScript code.

Since Boo already has a new keyword, used to define members with the same name
as one in the inherited type, we can’t use it directly to flag a constructor. To use
it we have to prefix new with @ to tell the compiler that we are referencing
the meta-method instead of the keyword.

global Coords

obj = Coords(10, 20)
js: obj = Coords(10, 20);

obj = @new(Coords(10, 20))
js: obj = new Coords(10, 20);

preserving

Solves the common problem of temporally backing up some variables to perform an action.

x = 'foo'
y = [10, 20]
preserving x, y[1]:
 x = 'bar'
 y[0] = 50
 y[1] = 60

print x # 'foo'
print y # [50, 20]

print

The print macro outputs the given arguments using the console.log function if
available in your environment.

foo = 'DrSlump'
print "Hello", foo # Hello Drslump

trace

Very similar to print but only outputs when in debug mode. The message is
prefixed with the filename and line number where the macro was used.

trace 'hello there' # filename.boo:11 hello there

with

Even though the with statement is considered evil in modern JavaScript, this macro
serves a similar purpose avoiding the drawbacks of its JavaScript sibling. It sets a
value as default target for expressions without one but does so explicitly by prefixing
the expressions with a dot.

with jQuery:
 .each({x| print x}) # Converted to jQuery.each()
 each() # Looks for a method named "each"

with foo = jQuery('#foo'):
 .html('Hi there!') # Converted to foo.html('Hi there!')

Attributes

Extension

Like in C# it’s possible to extend a type with new methods without modifying the
type’s hierarchy chain. The first argument of the method defined as a extension is
the type to which that method should be attached. If the compiler doesn’t find a
proper method defined in the extended type it will check the extensions for a proper
match.

[extension]
def toISO(date as Date):
 return date.getFullYear() + date.getMonth() + date.getDate()

[extension]
def incr(date as Date, seconds as int):
 date.setTime(date.getTime() + seconds*1000)

d = Date()
print d.toISO() # Converted to: print toISO(d)
d.incr(3600) # Converted to: incr(d, 3600)

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Overloading

Method overloading

Allows defining several functions with the same name which differ from each other in
the types of the input arguments.

Boo method overloading mechanism takes into account differences in the input arguments
of methods with the same name, it does not take into account differences in the return
types of those methods. Moreover, when looking for the best candidate in an instance,
it will choose one from the target instance type and will only look for candidates in
inherited types if it couldn’t find one.

Each overloaded method is assigned an unique suffix, so an overloaded method named
foo with two different signatures will generate two additional methods named
foo$0 and foo$1. The compiler will try to find the best candidate at compile
time, however there are times when that’s not possible, for instance when the target
object is ducky, performing the resolution at runtime. This has obviously a cost, so
try to avoid mixing overloading and duck typing in performance critical sections.

When the overloaded method is public and is used from external code, the calling site
cannot be updated to target a specific version of the method. Instead, calls to the
method make use of a runtime mechanism to forward the call to a valid candidate.

Note

The current implementation of the runtime dispatching only takes into
account the number of arguments, not their types. This shortcoming will
be removed in the future, implementing a more advanced resolution.

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Runtime library

BooJs requires a small runtime library to support the execution of the compiled
code. This library is located in the Boo.js file with an approximate size of
4Kb when minified.

Reasoning for using a runtime

Among the Javascript community there is the idea that requiring a companion runtime
library in order to run the generated code is a bad decision. The major complain is
that it imposes an additional dependency to keep track of, also increasing the final
code size of the delivered code, when for a Hello World style program you must
include a few extra kilobytes of functions that will probably never be used.

Obviously it would be ideal to avoid the use of a runtime library, unfortunately
it’s not possible to do. In order to keep code compatible with the original semantics
from Boo, some helper functions must be available, specially since Boo does not have
a 100% static type system.

Given the fact that a runtime is actually needed, it could be reduced to include
just the minimum functions necessary, however there is some stuff that is much
easier to implement with a small runtime function than it would be to statically
generate code for from the compiler. So the approach BooJs follows is to try to
keep the runtime library small but not at the expense of complicating the compiler
excessively.

The complaint about having an additional dependency is easily resolved by including
the runtime code inside the compiled file. It’s very easy to do for Javascript and
can be automated with any of the several build tools available.
For the one regarding the increased code size, let’s just say that if the compiler
had to generate code to support the language semantics, the final size of all that
feature specific code will probably exceed the size of the runtime for medium
sized projects. It makes no sense to measure the overhead of a runtime using a
simple example application, for developments so simple and small it probably doesn’t
make sense to use anything other than vanilla javascript for them.

Many compilers to Javascript will actually output their runtime support functions
as part of the generated code, so even if they can be advertised as runtime-free,
it’s actually being included automatically by the compiler when generating code
needing it. That’s one approach that BooJs will probably use in the future, acting
like a linker to just include those helpers actually needed for a compilation
unit, although even then it will still have a separated runtime library with stuff
that is very commonly used.

Builtins

Most of the standard Boo builtins are supported in BooJs. When referencing them from
Boo code they are global symbols, if you need to reference them from JavaScript code
they are available in the Boo object (eg: Boo.range).

__RUNTIME_VERSION__

Stores the version of the runtime currently in use. You can use this value to
work around versioning issues in your code to make it compatible with different
BooJs releases.

Note

To obtain the version of the compiler used to generate the code you can
use the __COMPILER_VERSION__ reference. The compiler will automatically
convert those references to a string containing the compiler version.

Array

While arrays are directly mapped to JavaScript the compiler will offer some additional
functionality when working with them: equality, addition, multiplication and membership
test.

l = ['foo', 'bar', 'baz']
if l == ('foo', 'bar', 'baz'):
 print "all items are equal"

r = l + (10, 20)
result: ['foo', 'bar', 'baz', 10, 20]

r = l * 2
result: ['foo', 'bar', 'baz', 'foo', 'bar', 'baz']

if 'bar' in l:
 print "array contains 'bar'"

array

Create an array of a given type, indicating how large it is or initialize it with the
values from an iterable.

an array with room for 5 strings
r = array(string, 5)
result: ['', '', '', '', '']

an array from an iterable
l = x * 10 for x in range(3)
r = array(l)
result: [0, 10, 20]

an array casting iterable values to a string
l = x * 10 for x in range(3)
r = array(string, l)
result: ['0', '10', '20']

AssertionError

Specific error type used by the assert macro.

CastError

Specific error type used to signal failures when casting values.

cat

Concatenates a list of iterables.

c = cat([10,20], ['a', 'b'])
result: [10, 20, 'a', 'b']

enumerate

Obtain an array of key-value pairs from an enumerable. This is usually used
to access the index value when using a for loop.

l = ('foo', 'bar', 'baz')
for idx, val in enumerate(l):
 print "$idx: $val"
outputs: 0: foo, 1: bar, 2: baz

filter

Apply a function to an iterable to filter out items from it in the generated
array. The callback function is called for each element of the iterable, if
it returns a truish value them it’s included in the result, otherwise the
element is ignored.

l = range(5)
r = filter(l, { _ % 2 })
result: [0, 2, 4]

Hash

Type to model a hash map, while a JavaScript’s object type does work like a hash
map by default, having a light weight type to reference in our code allows to easily
tell apart those values for which we don’t have a specific type from those that are
actually expected to work with hash map semantics.

Note

Since we strive for a light weight implementation by using JavaScript object
semantics, the Hash doesn’t accept arbitrary types as keys. Basically keys
should be restricted to string types, as they are in plain JavaScript code.

The generated code is optimized to avoid using the Hash type methods when possible,
generating instructions operating with plain JavaScript object syntax. There are
however the following helper methods that do not have a direct translation:

Create a new Hash and initialize it with some values
hash = Hash(foo: 'Foo', bar: 'Bar', baz: 100)
js: {foo: 'Foo', bar: 'Bar', baz: 100}

Create a new Hash and initialize it with some key-value pairs
hash = Hash(('foo' + i, i) for i in range(3))
js: {foo0: 0, foo1: 1, foo2: 2}

Iterate over the list of keys in the Hash
for k in hash.keys():
 print k

Iterate over the list of values in the hash
for v in hash.values():
 print v

Iterate over the list of key-value pairs in the hash
for k, v in hash.items():
 print "$k = $v"

Check if a key exists in a hash (uses JavaScript `.hasOwnProperty`)
if 'foo' in hash:
 print 'foo exists'

join

Joins the elements of an iterable to form a string applying an optional separator.
If no separator is given it defaults to a single white space character.

l = ('foo', 'bar', 'baz')
print join(l)
outputs: "foo bar baz"

print join(l, ', ')
outputs: "foo, bar, baz"

print join(l, '')
outputs: "foobarbaz"

len

Obtains the length of a string, array or Hash value. It will obtain the length of
anything that exposes a length property or method. Alternatively, for objects
it will report the number of own properties on them.

l = len([1, 2, 3])
result: 3

l = len({'foo': 'Foo', 'bar': 'Bar'})
result: 2

l = len('hello')
result: 5

map

Apply a function to every element in an iterable and returns an array with the
results.

l = ('foo', 'bar', 'baz')
r = map(l, { _.toUpper() })
result: ['FOO', 'BAR', 'BAZ']

NotImplementedError

Specific error type raised when an abstract method is not implemented

range

The primary loop construct in Boo is the for statement, unlike the versions
found in C derived languages it’s not possible to indicate initialization and
loop conditions, it always work by obtaining elements from an iterable. The
range builtin generates iterables that implement most common loop cases with
ease.

When a single argument is given it generates an iterable from 0 upto, but not
including, the argument given.

Two arguments indicate an start number (included) and an end number (not included).

Three arguments work as with only two but the third one indicates how the stepping
is done. By default it steps by 1 but we can use any value here, using a negative
one for example allows to generate a decreasing iterable.

Note

The BooJs compiler will optimize range based loops if it’s defined
as the iterable in the for construct (eg: not assigned to a temporary
variable), so its performance matches JavaScript’s native for construct.

for i in range(5):
 print i
outputs: 0, 1, 2, 3, 4

for i in range(2, 5):
 print i
outputs: 2, 3, 4

for i in range(2, 10, 2):
 print i
outputs: 2, 4, 6, 8

for i in range(10, 5):
 print i
outputs: 10, 9, 8, 7, 6

for i in range(10, 5, -2):
 print i
outputs: 10, 8, 6

reduce

Apply a function to every element in an iterable to return a final value. The
callback function receives two arguments, the accumulated value and the next
item from the iterable, the value returned is used as the accumulated value for
the next call.

If not initial value is given it defaults to the first element of the iterable,
making the first call to the function using it as accumulator and the second
element of the iterable.

l = range(5)
r = reduce(l, { x, y | x + y })
result: 10 (0 + 1 + 2 + 3 + 4)

r = reduce(l, 10, { x, y | x + y })
result: 20 (10 + 0 + 1 + 2 + 3 + 4)

reversed

Obtains an array from an iterable where the elements are in inverse order.

l = range(5)
r = reverse(l)
result: [4, 3, 2, 1]

String

The string type is directly mapped to JavaScript, there are however a couple of
additions included by the compiler: Multiplication and Formatting.

s = "Foo"
r = s * 3
result: "FooFooFoo"

r = "Foo {0}" % ('Bar',)
result: "Foo Bar"

r = "Foo {0} {{escaped}} {1}" % range(2)
result: "Foo 0 {escaped} 1"

zip

Builds an array of arrays by fetching an element for each of the iterables given
as arguments. The algorithm stops when any of the iterables is exhausted, making
it safe for using it with infinite generators.

names = ['John', 'Ivan', 'Rodrigo']
webs = ['foo.com', 'bar.com', 'baz.com']
r = zip(names, webs)
result: [['John', 'foo.com'], ['Ivan', 'bar.com'], ['Rodrigo', 'baz.com']]

This creates a Hash
h = Hash(zip(names, webs))
result: { 'John': 'foo.com', 'Ivan': 'bar.com', 'Rodrigo': 'baz.com' }

Get 3 random numbers (`random_generator` is a never ending generator)
for i, random in zip(range(3), random_generator()):
 print random
outputs: 3 random numbers

Events

Boo Event’s are a way to easily setup delegates in classes, implementing the observer
pattern. Basically they allow registering a callback on them from outside the class but
only firing them from inside the class.

Since it’s not clear how to map this to JavaScript there is a very lightweight runtime
support for them. Every event field is mapped to a function that triggers it when called,
exposing two additional methods add and remove to handle subscriptions. This is
transparent when using Boo code, adding a subscription is done with the += operator
and removing one with -=.

class Foo:
 event click as callable()
 def DoClick():
 click()

f = Foo()
f.click += def ():
 print "Clicked!"

To use it from JavaScript code we can use the runtime interface directly:

f.click.add(function () { console.log('Clicked!') })

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Modules

Boo follows a strict mapping of one module per file, in other words, each source
file is a module. From its .Net roots however there is also the concept of
namespaces, which allow to expose multiple modules under a single export point.

In BooJs that mechanism is respected and mapped to what is known as the
AMD pattern [https://github.com/amdjs/amdjs-api/wiki/AMD] in the Javascript world.
The reason why this pattern was chosen instead of something like Node.js require
is that BooJs code can be targeted to run on a browser too, where synchronous
loading of code is not widely supported.

Here is an example Boo module and the generated Javascript code with annotations:

namespace example

import myapp

def foo(s):
 notify(s)

foo("Hello")

// Namespace serves as ID and is mapped to exports so we can augment it
// Boo runtime is always passed as a dependency
// Imports are passed as additional dependencies
Boo.define('example', ['exports', 'Boo', 'myapp'], function (exports, Boo, myapp) {
 // Type definitions of the module
 function foo(s) {
 myapp.notify(s);
 }
 // Public types are exported
 exports.foo = foo;
});

// Namespace is mapped to exports
// Boo runtime is again always passed as a dependency
// Imports are passed as additional dependencies
Boo.require(['example', 'Boo', 'myapp'], function (exports, Boo, myapp) {
 // Executable portion of the module
 exports.foo("Hello");
});

One difference with the AMD spec is that define and require are not global symbols
but instead are referenced from the Boo runtime (eg. Boo.define). This is done to avoid
a dependency or conflict with an AMD loader in the environment, BooJs includes all the needed
functionality to manage AMD style dependencies. If you wish to use a more powerful loader you
can just point Boo.define and Boo.require to require.js [http://requirejs.org] for
example.

BooJs default AMD loader does not automatically fetch dependencies from disk or a web server,
it expects all the dependencies to be loaded up front, its job is only to resolve them in the
correct order. Since in BooJs the deployable unit is an assembly and not a module this
works quite well, you just need to remember to load all the generated assemblies in your
environment. For automatic loading of dependencies you can easily integrate with
require.js [http://requirejs.org] or any other module loader that conforms to the AMD
pattern.

Note

For Node.js environments a custom wrapper for the loader is in the roadmap, it will
take care of automatically importing referenced dependencies.

To call BooJs modules from your Javascript code you can use Boo.require to obtain the
desired module.

var example = Boo.require('example');
example.foo("Hello");
// ... or ...
var foo = Boo.require('example').foo;
foo("Hello");

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BooJS 0.0.1 documentation

Generators

Generators are really powerful in BooJs, they differ from standard Boo (or C#)
and model instead the pattern found in Python [http://www.python.org/dev/peps/pep-0342/]
or Mozilla’s JavaScript [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators#Generators.3A_a_better_way_to_build_Iterators].

In summary, every generator becomes a coroutine not only able to halt execution
at arbitrary points in order to return a value but also to receive values and
exceptions from the outer context. These features make generators a great primitive
for co-operative multitasking and event driven programming in general, for instance
the Async library is built on top of generators.

JavaScript engines, with the exception of Mozilla’s and recent V8 builds, do not offer
native support for this kind of generator. The BooJs compiler will instrument the code,
converting the generator to a state machine able to handle halting and resuming execution
at arbitrary points. While the generated code is convoluted it shows to be pretty fast
on modern browsers [http://jsperf.com/boojs-generator-loop], it runs roughly at half
the speed of an user land forEach implementation and about 70% the speed of Mozilla’s
native generators.

Generator interface

BooJs exposes Mozilla’s iterator and generator interfaces [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators]
since they are being standardized in ES6 (aka JavaScript Harmony) there is a chance that
in the future they get adapted to closely follow the standard. Basically a generator
returns a GeneratorIterator which implements Iterator for next() and also
offers send(value), throw(error) and close().

Native support

The compiler only targets standard JavaScript 1.5, not generating alternative code
paths for specific browsers. This is something that will probably change in the future
but currently generators always get instrumented and thus are not as performant as
native implementations, although they aren’t as slow as they might seem!

Even if native support is not used, BooJs generators offer a compatible API and hence
should work properly on every environment, including their use with native generator
loop constructs.

Closing generators

Generators keep state and allow to use ensure (aka finally) blocks inside them
so there is a need to properly close and dispose them. Boo for loop construct
understands the GeneratorIterator interface and is able to close them when the
iteration is over. However when manually iterating them you are responsible for
properly closing the generators.

Infinite generator
def gen():
 i = 1
 try:
 while true:
 yield i++
 ensure:
 print 'exited'

Automatically closed by the compiler
for _, i in zip(range(3), gen()):
 print i
Outputs: 1, 2, 3, 'exited'

Manually closing the generator
g = gen()
for i in range(3):
 print g.next()
Outputs: 1, 2, 3
g.close()
Outputs: exited

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	BooJS 0.0.1 documentation

Async library

BooJs includes a simple yet powerful asynchronous library modeled after the Promises/A
CommonJS spec [http://wiki.commonjs.org/wiki/Promises/A] also known as thenables. You
can read more about this asynchronous programming pattern on
Wikipedia [http://en.wikipedia.org/wiki/Promise_(programming)].

By supporting the Promises/A spec we ensure compatibility with some of the most popular
JavaScript frameworks like Dojo or jQuery. Other frameworks implementing the deferred,
promise, future or task patterns can be easily modified to be made compatible with
Promises/A for most use cases.

The Async library is exposed as an optional namespace, not included by default by the
compiler, which you can use in your own code just by importing the Async namespace
and loading the Boo.Async.js file in your environment.

Deferred

The Deferred class allows to create, control and resolve promises which can be
consumed by your own code or passed on to third party libraries that understand the
Promises/A spec.

def make_async(v):
 # Create a new deferred
 defer = Deferred()
 # Launch the async job
 setTimeout({
 # Resolve the deferred with the final value
 defer.resolve(v)
 }, 1000)
 # Return the deferred promise which can be observed
 return defer.promise

Obtain a promise
promise = make_async('foo')
Register a callback to observe the successful resolution of the promise
promise.done({ x | print x })
Register a callback to observe the wrongful resolution of the promise
promise.fail({ x | print 'Error:', x })

Note

Unlike some implementation that focus on raw performance (ie jQuery), Deferred
works internally as a tree instead of a list. Each time you attach a callback to a
deferred a new one is created internally returning its public interface, a Promise,
this allows to model complex flows avoiding side effects.

Note

A common pitfall when using the promise pattern is that some errors might go
unnoticed if we are not very careful to observe failures on every promise generated.
To avoid this you can assign a global callback in Deferred.onError to act upon
any rejected promise that isn’t explicitly controlled. It’s the equivalent to a
handler for uncaught exceptions. By default, if no custom handler is assigned,
a exception is raised with the reported error.

Promise

A Promise object is the public interface of a Deferred, there is a 1:1
relationship between them. While a Deferred allows to control its cancellation,
rejection and resolution a Promise only allows to register our interest in its
resolution (successful or not).

The Promises/A spec just specifies that a Promise object must expose a public
method called then which receives 3 arguments: successCallback, failureCallback
and progressCallback. This simple design makes it trivial to share promises
between third party libraries, like jQuery for instance, allowing to observe the
resolution of an asynchronous task with ease.

Utilities

enqueue

This simple method allows to defer the execution of a callback until the stack is
empty. This is specially useful when you want to trigger an action just after a
configuration step has completed. For instance, this method is used internally by
Deferred to resolve them, that’s why they can be used also with immediate values.

d = {}
enqueue({ d.run() })
d.run = def():
 print 'Foo!'
d.run() will called now

Note

In a browser environment it will use setImmediate or setTimeout
with a timeout of 0. For Node it will use process.nextTick.

when

A common pattern is to wait until two or more action have completed before
continuing. The when method will produce a Promise that gets resolved
only when all the arguments given are resolved successfully. If any of them
is rejected the Promise is rejected also and the other arguments are
canceled.

p = when(jQuery.get('/data/a'), jQuery.get('/data/b'), 'immediate value')

p.done def(results):
 a, b, immediate = results
 print a, b, immediate

p.fail def(error):
 print 'An error occurred fetching data:', error

Note

when can also be used as a shortcut to wrap any value in a
promise which gets almost instantly resolved.

sleep

This method generates a Promise that gets resolved after the given milliseconds.
It can be used to delay the execution of some code without blocking the execution
thread.

p = sleep(10s)
p.done:
 print 'Woke up after 10 seconds'

It also supports providing a callback directly
sleep 10s:
 print 'Woke up after 10 seconds'

Async/Await

One of the nicest features of the Async library is its implementation of the Async/Await
pattern. Modeling your logic around promises is a nice way to support asynchronicity,
however it forces you to replace the language native flow control mechanisms by those
of the Deferred API. The Async/Await pattern removes that limitation, allowing you to
write promise based code as if they were synchronous operations.

Under the hood the pattern makes use of coroutines (constructed via generators) to suspend
and resume the execution of code at any point in a function based on the result of a
Promise.

When we annotate a method as async we are telling the compiler that we want to control
its execution in a special way, suspending it when an await keyword is found until
its value is resolved. In other words, the await keyword indicates that we want to wait
at that point until the given Promise object is resolved, avoiding the need to chain
callbacks to control the program logic flow.

[async] def fetch(url):
 print "Fetching $url"
 try:
 # jQuery's ajax methods are Promises/A compatible
 await data = jQuery.get(url)
 print data
 except ex:
 print 'Error:', ex

The code above is roughly equivalent to the following one:

def fetch(url):
 print "Fetching $url"
 promise = jQuery.get(url)
 promise.done = def(data):
 print data
 promise.fail = def(error):
 print 'Error:', error

Even in this simple example the benefits of the Async/Await version are obvious. The
complexity of using the promise API is hidden from us, with the added benefit that
every async method always returns a promise itself, thus it’s very easy to
compose complex flows with them.

def fetch(id):
 print 'Fetching data'
 await data = jQuery.get('http://ajax.com/' + id)
 return data

def update(id):
 await data = fetch(id)
 data.foo = 10
 await jQuery.put('http://ajax.com/' + id, data)
 print 'Data updated'

Another point where this pattern excels is in the handling of error conditions.
There is no need to observe the promises for failures, using the native try/except
mechanism we can control failures in a clean way, even maintaining a meaningful
stacktrace to troubleshot any problem.

Note

The await keyword also works for multiple values, by using when under the
hood. This means that we can easily parallelize asynchronous operations and only
resume execution when all of them have completed.

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	BooJS 0.0.1 documentation

Index

 Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		BooJS 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Iván -DrSlump- Montes.
 Created using Sphinx 1.3.1.

_static/up.png

_static/comment-bright.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

